近日,Science Advances发表了题为“Broadband and photovoltaic THz/IR response in the GaAs-based ratchet photodetector”的研究工作(Sci. Adv. 8, eabn2031 (2022))。该论文提出了一种基于GaAs/AlxGa1-xAs异质结的量子棘轮结构。这种结构综合利用了电泵浦实现的热载流子注入效应、自由载流子吸收和从轻、重空穴带到自旋轨道分裂带的光跃迁等多种吸收机制,突破了界面势垒的限制,实现了从近红外到太赫兹波段(4-300太赫兹)的超宽谱光响应。
A. 量子棘轮探测器结构. B. 探测器能带结构. C. 器件PL光谱. D.探测器微观机制示意图.
近年来,红外(IR)/太赫兹(THz)光电探测器已经引起了极大的关注。然而,设计高性能的宽带红外/太赫兹探测器一直是个巨大的挑战。在宽谱探测器领域,一直是热探测器占据主要地位,但热探测器难以实现高速探测。光子型探测器具有可调节的响应范围、良好的信噪比和非常快的响应速度。量子阱探测器(QWP)响应速度快,灵敏度高,光子响应范围灵活可调,是性能优异的光子型红外/太赫兹光电探测器。但窄带特性使其覆盖波段十分有限。内光发射探测器(IWIP)由于其正入射响应机制、宽谱响应以及可调的截止频率,一直被认为是极具竞争力的宽带红外/太赫兹光电探测器。但其激活能低,导致较大的暗电流,需要在极低的温度(液氦温区)下工作。量子点探测器可以在高温下实现太赫兹探测和正入射响应,但可靠性和可重复性仍然是一个巨大的挑战。光泵浦热空穴效应探测器(OPHED)基于热-冷空穴的能量转移机制进行探测,可以突破带隙光谱的限制,实现超宽谱的红外/太赫兹探测。其探测波长可调,同时能够抑制暗电流和噪声。然而,依赖于外部光学激励的热空穴注入是太赫兹探测的前置条件,这大大增加了OPHED的复杂性。
A.暗电流随温度变化 B. 暗电流与常用太赫兹探测器对比 C. 零偏压下微观响应机制 D. 量子棘轮探测器光响应谱.
应用物理与计算数学研究所白鹏与上海交通大学张月蘅、沈文忠研究组提出了一种基于GaAs/AlxGa1-xAs量子棘轮新结构的超宽谱光子型探测器。该探测器能实现正入射响应,响应范围覆盖4-300THz,远超其他光子类型的探测器的覆盖范围。此外,该器件即使在零偏置电压下也能产生明显的光电流。其峰值响应率达7.3 A/W,比OPHED高出五个数量级。由于量子棘轮能带结构的不对称性,器件的响应在正负偏压下也表现出明显的差别。在温度低于 77K时,由于量子棘轮效应,探测器表现出明显的整流行为,器件暗电流比现有的光子型探测器低得多,噪声等效功率低至3.5 pW·Hz−1/2,探测率高达2.9 × 1010 Jones,展示出其在高温下工作的潜能。
该项研究中展示了一种新型超宽带太赫兹/红外光电探测器。在无任何光耦合结构设计的情况下,这种成像器件具备很宽的光谱探测范围(4-300THz),快响应速度,低噪声等效功率和高探测率,为发展高温高速的超宽谱光电探测器件奠定了基础。
该工作近日发表于Science Advances (Sci. Adv. 8, eabn2031 (2022))上。共同第一作者北京应用物理与计算数学研究所助理研究员白鹏和张月蘅课题组博士研究生李晓虹,共同通讯作者为应用物理与计算数学研究所楚卫东研究员、上海交通大学张月蘅教授和清华大学赵自然教授。研究工作得到了国家自然科学基金、上海市科技自然科学基金、博士后基金和上海交通大学“人工结构及量子调控”教育部重点实验室开放课题的经费支持。上海交通大学张月蘅课题组承担并参与了器件设计、器件性能测试表征及论文写作方面的工作。
论文链接:https://www.science.org/doi/10.1126/sciadv.abn2031
- 关键词:上海交大 超宽谱光电探测器 量子棘轮探测器
- 浏览量:12959
- 来 源:上海交通大学物理与天文学院
- 编辑:清风
- 声明:凡本网注明" 来源:仪商网"的所有作品,版权均属于仪商网,未经本网授权不得转载、摘编使用。
经本网授权使用,并注明"来源:仪商网"。违反上述声明者,本网将追究其相关法律责任。
本网转载并注明自其它来源的作品,归原版权所有人所有。目的在于传递更多信息,并不代表本网赞同其观点或证实其内容的真实性,不承担此类作品侵权行为的直接责任及连带责任。如有作品的内容、版权以及其它问题的,请在作品发表之日起一周内与本网联系,否则视为放弃相关权利。
本网转载自其它媒体或授权刊载,如有作品内容、版权以及其它问题的,请联系我们。相关合作、投稿、转载授权等事宜,请联系本网。
QQ:2268148259、3050252122。
-
构建中国商业航天新生态 NI提供航空航天测试解决方案航空航天|2020-01-06
-
船舶制造工艺装备的发展与创新船舶制造|2015-07-30
-
上海微系统所研制出超小型双通道集成二氧化碳红外气体传感器前沿科技|2024-11-14
-
西安交大在人工智能设计MEMS陀螺仪领域取得重要进展前沿科技|2024-11-06
-
安光所在拉曼光谱气体检测研究方面取得进展前沿科技|2024-10-12
-
喜讯!我国两所高校获存储器技术新突破前沿科技|2024-08-14
-
西安电子科技大学在EDA硬件仿真编译领域取得系列重要学术成果前沿科技|2024-07-29
-
探索传感器科技前沿 ——激光测距传感器前沿科技|2024-07-11
-
传感器能在3D生物打印组织内定位前沿科技|2024-07-10
-
北京大学江颖团队利用自研国产科学仪器获重大突破前沿科技|2024-05-27
-
华南理工大学开发出有机红外光电探测器 实现成像技术的进步前沿科技|2024-05-13
-
国际领先水平!龙峰团队“倏逝波荧光全光纤生物传感仪器及在新污染物检测中的应用”科技成果通过专家鉴定前沿科技|2024-05-11