无论是传统的模拟示波器还是现代的数字示波器,测量信号频率的功能从产品诞生之日起就具备了。早期的模拟示波器,测频过程需要工程师手动调节水平时基、触发等功能使得屏幕上呈现出1~2个周期的稳定波形后,通过观察该信号一个周期内占据的水平格数,再参考水平时基估算出信号周期,最终得到频率。
近些年随着数字示波器在测量技术在精度、速度以及使用便捷性等诸多方面突飞猛进的发展,示波器能够自动且快速地完成信号频率测量,并呈现到屏幕上,方便工程师进行读取。但是在使用示波器进行频率测量时,常遇到这样的问题:
1、频率的测量结果是对采样后的数据经过计算一个周期的时间得到的。由于不同的水平时基对应不同的采样率,导致采样点间隔时间不同,因此会影响测量精度。
2、工程师在实际测量一个很稳定的信号频率时,测量结果的后几位小数点会有随机性的变化,这也是测量精度不高的表现。
那有没有一种方法能够使测量结果的精度很高,又能够不受示波器采样率变化的影响呢?
有!今天小普来给大家介绍示波器的频率计功能。
频率计
频率计是一种用作测量信号周期、频率特征的功能单元或独立仪器,相对于示波器的通用测量功能,它具有测量精度高、测量精度不随水平时基挡位变化的优点,在高精度频率测量的场景应用中发挥着重要的作用。
RIGOL旗下的多个系列示波器都集成了频率计功能,但测量精度都停留在6位有效位数。为了满足客户更严苛的测量场景,RIGOL最新推的DS70000 示波器将频率测量精度提升到了8位有效位数,确保在满足带宽内的所有周期性信号的频率都能被准确测量。
频率计实现原理
示波器的工作过程可分为信号输入、垂直系统(信号幅度调理)、采样(模拟信号数字化)、频率计算和结果显示等几部分,如下图所示。
其中信号输入、垂直系统、采样属于通用数字示波器的必备功能,频率计算是通过直接对ADC采样得到的原始数据进行处理和分析,得到信号频率。依托具有高速ADC采样功能的示波器,频率计可以很轻松的获得具有高时间分辨率(最高可达到ADC的采样间隔时间)的采样点,从而得到高精度的测量结果。
频率计算过程分为以下两个步骤:
1、边沿判断
示波器对周期性模拟信号进行采样量化后的数据与一个用户设置的“比较电平”进行比较,从低到高跨过此电平的跳变为“上升沿”,从高到低跨过此电平的跳变为“下降沿”。两个上升沿(或两个下降沿)之间的时间间隔为当前被测信号的一个周期。
正确识别信号中的边沿是频率计能够得到正确结果的前提和关键。在实际应用场景中,真实的信号往往自带一些噪声,如果不对这些噪声进行处理,就会造成边沿的错误判断,影响最终的测量结果。如下图所示,圆圈标记的位置因为一个毛刺的存在导致了在该位置出现了两个上升沿。
解决上述问题的方法,就是在原有比较器的基础上再增加一个比较电平,只有同时跨过两个比较电平的跳变才被判决为“有效沿”。两个比较电平之间的区域为“迟滞区间”,区间越大对噪声的抑制能力越强,反之则越小,这也是大家在触发系统中经常听到的触发灵敏度的概念。RIGOL所有系列的数字示波器都支持噪声抑制功能,用户可根据实际情况决定是否使用。
2、统计/计算
测频法
一段时间内,被测信号有效信号周期个数为,这段时间内被测信号上升沿(或下降沿)的个数减1。用这段时间除以周期个数可以得到信号一个周期的时间,从而得到信号频率。这“一段时间”我们称之为“闸门时间”。通常情况下,闸门时间内并不能包含整数个信号周期,简单进行除法计算会存在较大的误差。在实际计算过程中,还需要将闸门时间内的起始时间和结束时间去掉,仅用整数倍信号周期的时间进行计算。
如下图所示,设闸门时间为Tg(9个参考时钟),闸门时间内上升沿的个数为N(3个),闸门使能时刻到第一个被测信号的上升沿时间为Ts(1个参考时钟),闸门结束时刻距离最后一个被测信号的上升沿时间为Te(1个参考时钟)。
信号周期Tc的计算公式为:Tc= (Tg – Ts – Te)/(N-1)
频率F的计算公式为:F = 1/Tc
测周法
直接测量被测信号的一个周期的时间,叫做测周法。测周法没有闸门时间的概念,系统仅需要测量两个上升沿之间的时间直接得到信号的周期,再通过取倒数得到信号的频率。如下图所示,可直接得到被测信号的周期Tc。
频率F的计算公式为:Fs =1/Tc
无论是测频法还是测周法都需要有一个参考时钟,它保证了测量结果的精度。测量不同频率的信号、选择不同挡位的时基,都不会影响和改变频率计的测量精度,这就是等精度频率计。
通常高频信号适合采用测频法,低频信号适合采用测周法。在实际应用中用户不需要关心到底应该采用哪种测量方法,系统会根据被测信号的频率特性自动选择合适的测量方法。
频率计的性能指标
有效位数
有效位数是指从测量结果的左起第一个非0后的所有位数。
DS70000系列示波器超高的20GSa/s采样速率实现了采样点间隔时间分辨率小至50Ps,其内部集成的频率计依托更小的ΔT误差和更精确的测量算法,使得测量结果达到了8位有效位数的精度。在实际应用中用户可以根据实际情况在3bits~8bits有效位数范围内自由设置。
测量时间
测量时间是指能够重新获取一次有效测量结果所需要的时间。
对于测频法,测量时间等效于闸门时间。DS70000系列示波器能够在1s内的测量时间提供最大8位有效位数的结果,兼顾了测量速度和测量精度。
对于测周法,测量时间取决于被测信号的周期,被测信号的周期越大测量时间越长,比如测量一个0.1Hz信号,测量时间为10s。
测量误差
测量误差主要来自数字量化误差、边沿误判导致的误差、参考时钟精度导致的误差等。
频率计的统计功能
DS70000系列示波器的频率计还集成了统计功能,统计结果包括自测量功能开启后测量结果中的最大值、最小值和平均值。用户通过观察统计结果可以清晰地知道在测量的这段时间内测量结果是否存在过大、过小等异常问题。
频率计的统计功能
如何使用频率计
正确使用频率计功能能够让您快速、准确地获取结果,下面以DS70000为例,介绍一下该如何使用示波器的频率计功能。
总结
RIGOL 自主研发的DS70000 系列数字示波器,依赖于RIGOL工程师潜心十年打造的UltraVisonIII 硬件平台,搭载着自主研制的“凤凰座”芯片组,实现了国内领先的20GSa/s超高采样率;依托该平台轻松实现了高达8位有效位数的高精度频率计。DS70000系列数字示波器多种人性化的设计,相信一定会为您带来超高品质的体验。
DS70000系列数字示波器
- 关键词:示波器 测量 频率计
- 浏览量:9585
- 来 源:普源精电 RIGOL
- 编辑:清风
- 声明:凡本网注明" 来源:仪商网"的所有作品,版权均属于仪商网,未经本网授权不得转载、摘编使用。
经本网授权使用,并注明"来源:仪商网"。违反上述声明者,本网将追究其相关法律责任。
本网转载并注明自其它来源的作品,归原版权所有人所有。目的在于传递更多信息,并不代表本网赞同其观点或证实其内容的真实性,不承担此类作品侵权行为的直接责任及连带责任。如有作品的内容、版权以及其它问题的,请在作品发表之日起一周内与本网联系,否则视为放弃相关权利。
本网转载自其它媒体或授权刊载,如有作品内容、版权以及其它问题的,请联系我们。相关合作、投稿、转载授权等事宜,请联系本网。
QQ:2268148259、3050252122。 -
-
示波器测量小信号波形干扰问题及解决之道电子行业|2025-04-07
-
鼎阳仪器:科研教育领域的得力伙伴科研院校|2025-04-07
-
电网波动测试为何如此重要?技术分析|2025-04-03
-
深度解析数字示波器垂直测量的核心算法产品应用|2025-04-02
-
鼎阳科技:为汽车行业提供全方位测试解决方案汽车行业|2025-04-01
-
LCR 测试仪在医疗设备可靠性验证中的关键作用产品应用|2025-03-31
-
如何使用手持隔离示波表,找到电气故障源头?产品应用|2025-03-27
-
前沿科技赋能通信测试仪器,开启通信行业革新 “加速度”前沿科技|2025-03-24
-
多路交直流电压、电流和温度测试产品应用|2025-03-18
-
费思FT68200A系列电子负载在10kW激光电源测试中的高效应用产品应用|2025-03-09