业界普遍认为,混合波束赋形(例如图1所示)将是工作在微波和毫米波频率的5G系统的首选架构。这种架构综合运用数字 (MIMO) 和模拟波束赋形来克服高路径损耗并提高频谱效率。如图1所示,m个数据流的组合分割到n条RF路径上以形成自由空间中的波束,故天线元件总数为乘积m × n。数字流可通过多种方式组合,既可利用高层MIMO将所有能量导向单个用户,也可以利用多用户MIMO支持多个用户。
本文将考察一个简单的大规模天线阵列示例,借以探讨毫米波无线电的最优技术选择。现在深入查看毫米波系统无线电部分的框图,我们看到一个经典超外差结构完成微波信号到数字信号的变换, 然后连接到多路射频信号处理路径,这里主要是运用微波移相器和衰减器来实现波束赋形。 传统上,毫米波系统是利用分立器件构建,导致其尺寸较大且 成本较高。这样的系统里面的器件使用CMOS、SiGe BiCMOS和 GaAs等技术,使每个器件都能得到较优的性能。例如,数据转换器现在采用CMOS工艺开发,使采样速率达到GHz范围。上下变频和波束赋形功能可以在SiGe BiCMOS中有效实现。根据系统指标要求,可能需要基于GaAs功率放大器和低噪声放大器,但如果 SiGe BiCMOS能够满足要求,利用它将能实现较高的集成度。
对于5G毫米波系统,业界希望将微波器件安装在天线基板背面,这要求微波芯片的集成度必须大大提高。例如,中心频率为 28 GHz的天线的半波阵子间距约为5 mm。频率越高,此间距越小,芯片或封装尺寸因而成为重要考虑因素。理想情况下,单波束的整个框图都应当集成到单个IC中;实际情形中,至少应将上下变频器和RF前端集成到单个RFIC中。集成度和工艺选择在某种程度上是由应用决定的,在下面的示例分析中我们将体会到这一点。
示例分析:天线中心频率为28 GHz, EIRP为60 dBm
此分析考虑一个典型基站天线系统,EIRP要求为60 dBm。使用如下假设条件:
- 天线阵子增益 = 6 dBi(瞄准线)
- 波形PAPR = 10 dB(采用QAM的OFDM)
- P1dB时的功率放大器PAE = 30%
- 发射/接收开关损耗 = 2 dB
- 发射/接收占空比 = 70%/30%
- 数据流 = 8
- 各电路模块的功耗基于现有技术。
该模型以8个数据流为基础来构建,连接到不同数量的RF链。模型中的天线数量以8的倍数扩大,最多512个元件。
图2显示了功率放大器线性度随着天线增益提高而变化的情况。注意:由于开关损耗,放大器的输出功率要比提供给天线的功率高2 dB。当给天线增加元件时,方向性增益随着X轴对数值提高而线性提高,因此,各放大器的功耗要求降低。
为了便于说明,我们在曲线上叠加了技术图,指示哪种技术对不 同范围的天线元件数量最佳。注意:不同技术之间存在重叠,这 是因为每种技术都有一个适用的值范围。另外,根据工艺和电路设计实践,具体技术可以实现的性能也有一个范围。元件非常少时,各链需要高功率PA(GaN和GaAs),但当元件数量超过200时, P1dB降到20dBm以下,处于硅工艺可以满足的范围。当元件数量 超过500时,PA性能处于当前CMOS技术就能实现的范围。
现在考虑元件增加时天线Tx系统的功耗,如图3所示。同预期一样,功耗与天线增益成反比关系,但有一个限值。超过数百元件时,PA的功耗不再占主导地位,导致效益递减。
整个系统的功耗如图4所示(包括发射机和接收机)。同预期一样,接收机的功耗随着RF链的增加而线性提高。若将不断下降的Tx功耗曲线叠加在不断上升的Rx功耗曲线上,我们会观察到一个最低功耗区域。
本例中,最低值出现在大约128个元件时。回顾图2给出的技术图,要利用128个元件实现60dBm的EIRP,最佳PA技术是GaAs。
虽然使用GaAs PA可以实现最低的天线功耗和60dBm EIRP,但这可能无法满足系统设计的全部要求。前面提到,很多情况下要求将RFIC放在天线元件的λ/2间距以内。使用GaAs发射/接收模块可提供所需的性能,但不满足尺寸约束条件。为了利用GaAs发射/接收模块,需要采用其他封装和布线方案。
优先选择可能是增加天线元件数量以使用集成到RFIC中的SiGe BiCMOS功率放大器。图4显示,若将元件数量加倍,达到约256 时,SiGe放大器便能满足输出功率要求。功耗的增幅很小,而且可以把SiGe BiCMOS RFIC放到天线元件 (28 GHz) 的λ/2间距以内。
将这一做法扩展到CMOS,我们发现CMOS也能实现整体60dBm EIRP,但从技术图看,元件数量还要加倍。因此,这种方案会导致尺寸和功耗增加,考虑到电流技术限制,CMOS方法不是可行的选择。
我们的分析表明:同时考虑功耗和集成尺寸的话,当前实现60dBm EIRP天线的最佳方案是将SiGe BiCMOS技术集成到RFIC中。 然而,如果考虑将更低功耗的天线用于CPE,那么CMOS当然是可行的方案。
这一分析是基于当前可用技术,但毫米波硅工艺和设计技术正在取得重大进步。我们预计未来的硅工艺会有更好的能效和更高的 输出功率能力,将能实现更小的尺寸并进一步优化天线尺寸。
随着5G的到来日益临近,设计人员将持续遇到挑战。为毫米波无线电应用确定最佳技术方案时,考虑信号链的所有方面和不同IC工艺的各种优势是有益的。随着5G生态系统不断发展,ADI公司依托独有的比特到毫米波能力,致力于为客户提供广泛的技术组合(包括各种电路设计工艺)和系统化方法。
- 关键词:仪器仪表 测试测量 毫米波 射频
- 浏览量:1271
- 编辑:Thomas Cameron博士
- 声明:凡本网注明" 来源:仪商网"的所有作品,版权均属于仪商网,未经本网授权不得转载、摘编使用。
经本网授权使用,并注明"来源:仪商网"。违反上述声明者,本网将追究其相关法律责任。
本网转载并注明自其它来源的作品,归原版权所有人所有。目的在于传递更多信息,并不代表本网赞同其观点或证实其内容的真实性,不承担此类作品侵权行为的直接责任及连带责任。如有作品的内容、版权以及其它问题的,请在作品发表之日起一周内与本网联系,否则视为放弃相关权利。
本网转载自其它媒体或授权刊载,如有作品内容、版权以及其它问题的,请联系我们。相关合作、投稿、转载授权等事宜,请联系本网。
QQ:2268148259、3050252122。 -
-
两分钟带你了解多功能标准源产品应用|2025-04-07
-
胜利仪器 VICTOR 8045mini:小型台式万用表的 “全能战士”产品应用|2025-03-26
-
如何选择合适的多路温度记录仪产品应用|2025-04-01
-
前沿科技赋能通信测试仪器,开启通信行业革新 “加速度”前沿科技|2025-03-24
-
使用4262动态信号分析仪测量扬声器的频率响应产品应用|2025-02-28
-
前沿技术:仪商网带你探索仪器行业科技奥秘前沿科技|2025-02-26
-
工业仪器仪表:工业 4.0 的基石产品应用|2025-03-18
-
热像仪赋能仪器仪表行业数字化转型:智能诊断与能效优化新实践产品应用|2025-02-12
-
化工安全高效生产,有他们为您保驾护航产品应用|2025-01-15
-
中国农大工学院汤修映教授团队在气体传感器及其仪器装备制造领域取得重大进展前沿科技|2025-01-10